Feature reduction and payload location with WAM steganalysis

نویسندگان

  • Andrew D. Ker
  • Ivans Lubenko
چکیده

WAM steganalysis is a feature-based classifier for detecting LSB matching steganography, presented in 2006 by Goljan et al. and demonstrated to be sensitive even to small payloads. This paper makes three contributions to the development of the WAM method. First, we benchmark some variants of WAM in a number of sets of cover images, and we are able to quantify the significance of differences in results between different machine learning algorithms based on WAM features. It turns out that, like many of its competitors, WAM is not effective in certain types of cover, and furthermore it is hard to predict which types of cover are suitable for WAM steganalysis. Second, we demonstrate that only a few the features used in WAM steganalysis do almost all of the work, so that a simplified WAM steganalyser can be constructed in exchange for a little less detection power. Finally, we demonstrate how the WAM method can be extended to provide forensic tools to identify the location (and potentially content) of LSB matching payload, given a number of stego images with payload placed in the same locations. Although easily evaded, this is a plausible situation if the same stego key is mistakenly re-used for embedding in multiple images.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Multiple Re-embeddings for Quantitative Steganalysis and Image Reliability Estimation

The quantitative steganalysis problem aims at estimating the amount of payload embedded inside a document. In this paper, JPEG images are considered, and by the use of a re-embedding based methodology, it is possible to estimate the number of original embedding changes performed on the image by a stego source and to slightly improve the estimation regarding classical quantitative steganalysis m...

متن کامل

An extended feature set for blind image steganalysis in contourlet domain

The aim of image steganalysis is to detect the presence of hidden messages in stego images. We propose a blind image steganalysis method in Contourlet domain and then show that the embedding process changes statistics of Contourlet coefficients. The suspicious image is transformed into Contourlet space, and then the statistics of Contourlet subbands coefficients are extracted as features. We us...

متن کامل

پنهان‌شکنی تصویر براساس ویژگیهای ماتریس ‌هم‌وقوعی

In this paper two novel steganalysis methods is presented based on co-occurrence matrix of an image. It is shown that by using features extracted from this matrix, we can differentiate between cover and stego images. These features include energy, entropy, contrast, inverse difference moment, maximum probability and correlation. We use SVM classification for separation of cover and stego imag...

متن کامل

On dangers of cross-validation in steganalysis

Modern steganalysis is a combination of a feature space design and a supervised binary classification. In this report, we assume that the feature space has been already constructed, i.e., the steganalyst has a set of training features and needs to train a binary classifier. Any machine learning tool can be used for this task and its parameters can be tuned through cross-validation, a standard a...

متن کامل

نهان‌کاوی صوت مبتنی بر همبستگی بین فریم و کاهش بازگشتی ویژگی

Dramatic changes in digital communication and exchange of image, audio, video and text files result in a suitable field for interpersonal transfers of hidden information. Therefore, nowadays, preserving channel security and intellectual property and access to hidden information make new fields of researches naming steganography, watermarking and steganalysis. Steganalysis as a binary classifica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009